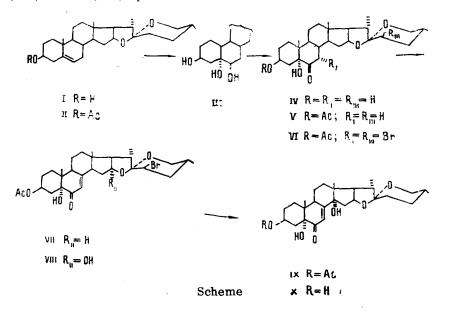
ANALOGS OF ECDYSONES BASED ON STEROID SAPOGENINS

II. 3β , 5, 14 α -TRIHY DROXY-(25R)-5 α -SPIROST-7-EN-6-ONE

```
I. L. Novosel'skaya, M. B. Gorovits,
and N. K. Abubakirov
```

Continuing an investigation of the synthesis of ecdysone analogs [1], from diosgenin (I) we have obtained the 3β , 5, 14α -trihydroxy- 5α -spirost-7-en-6-one (X). By a known method [2], diosgenin (I) was converted into the triol (III), which, on oxidation with N-bromosuccinimide in dioxane solution for seven days formed the spirostan-6-one (IV) [3] with mp 269-272°C, $[\alpha]_D^{20}$ -111.4° (c 1.92; CHCl₃). Yield of (IV) calculated on (I)-78%.


UDC 547.926

The acetylation of (IV) gave the acetate (V), with the composition $C_{29}H_{44}O_6$, mp 265-267°C, $[\alpha]_D^{20}-121.7^\circ$ (c 1.84; CHCl₃). Compound (V) can also be obtained by the direct oxidation of diosgenin acetate (II) with tert-amyl hydroperoxide [4].

The bromination of (V) in glacial acetic acid [5, 6] with two moles of Br_2 at 15°C led with 61% yield to the 7 α ,23-dibromide (VI), with the composition $C_{29}H_{42}O_6Br_2$, mp 208-209°C, which is obviously a mixture of the 23S- and 23R-bromo derivatives [5].

The splitting off of HBr from (VI) under the action of Li_2CO_3 and LiBr in dimethylformamide [6] gave a 57% yield of the spirostene (VII), with the composition $C_{23}H_{41}O_6\text{Br}$, mp 182-185°C; $[\alpha]_D^{20}$ -96.4° (c 1.90; CHCl₃); $\lambda \frac{C_2H_5OH}{max}$ 246 nm, log ϵ 4.20.

The presence in the NMR spectrum of (VII) of a one-proton singlet at 4.09 ppm ($W_{1/2}=6$ Hz) corresponding to an equatorial proton at C_{23} , and also a downfield shift in the signal of the C_{21} methyl group (1.15 ppm) by 0.22 ppm [7] as compared with the corresponding signal (0.93 ppm) of the acetate (V) shows that compound (VII) is (23R)-bromo-(25R)-spirostene.

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 258-259, March-April, 1975. Original article submitted November 6, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

The introduction of the 14 α -hydroxy group was effected by oxidizing (VII) with SeO₂ in dioxane [6]. From the reaction products was isolated a 75% yield of the 14 α -hydroxyspirostene (VIII) with the composition C₂₉H₄₁O₇Br, mp 236-238°C; [α]²⁰_D = 55.7° (c 1.67; CHCl₃).

The reduction of (VIII) with zinc dust in ethanol gave a 71% yield of 3β , $5,14\alpha$ -trihydroxy- 5α -spirost-7-en-6-one acetate (IX) with the composition $C_{29}H_{42}O_7$, mp 274-276°C, $[\alpha]_D^{20} = 12.8^\circ$ (c 2.00; CHCl₃). The saponification of (IX) with an aqueous methanolic solution of K_2CO_3 yielded 3β , $5,14\alpha$ -trihydroxy-(25R)- 5α -spirost-7-en-6-one (X) with the composition $C_{27}H_{40}O_6$, mp 261-263°C; $[\alpha]_D^{20} = 5.4^\circ$ (c 2.23; CHCl₃).

The introduction of the 14 α -hydroxy group was effected by oxidizing (VII) with SeO₂ in dioxane [6]. From the reaction products was isolated a 75% yield of the 14 α -hydroxyspirostene (VII) with the composition C₂₉H₄₁O₇Br, mp 236-238°C; [α]_D²⁰-55.7° (c 1.67; CHCl₃).

The reduction of (VIII) with zinc dust in ethanol gave a 71% yield of 3β , 5, 14 α -trihydroxy-5 α -spirost-7-en-6-one acetate (IX) with the composition C₂₉H₄₂O₇, mp 274-276°C, $[\alpha]_D^{20} = 12.8°$ (c 2.00; CHCl₃). The saponification of (IX) with an aqueous methanolic solution of K₂CO₃ yielded 3β , 5, 14 α -trihydroxy-(25R)-5 α -spirost-7-en-6-one (X) with the composition C₂₇H₄₀O₆, mp 261-263°C; $[\alpha]_D^{20} = 5.4°$ (c 2.23; CHCl₃).

LITERATURE CITED

- 1. M. B. Gorovits, A. N. Kel'ginbaev, F. S. Khristulas, and N. K. Abubakirov, Khim. Prirodn. Soedin., 562 (1973).
- 2. J. Romo, G. Rosenkranz, C. Djerassi, and F. Sondheimer, J. Org. Chem., 19, 1509 (1954).
- 3. H. Nawa, M. Uchibayashi, A. Okabori, K. Morita, and T. Miki, Chem. Pharm. Bull., 11, 139 (1963).
- 4. U. M. Dzhemilev, V. P. Yur'ev, G. A. Tolstikov, and F. B. Germanov, Dokl. Akad. Nauk SSSR, <u>196</u>, 588 (1971).
- 5. G. R. Pettit and J. C. Knight, Tetrahedron, <u>20</u>, 1999 (1964).
- 6. A. Furlenmeier, A. Furst, A. Langemann, G. Waldvogel, U. Kerb, P. Hocks, and R. Wiechert, Helv. Chim. Acta, <u>49</u>, 1591 (1966).
- 7. K. Tori and K. Aono, Ann. Rept. Shionogi Res. Lab., 14, 136 (1964).